IEEE Stds 1584–2002, 1584a–2004 (Amendment 1 to IEEE Std 1584–2002), and 1584b–2011 (Amendment 2: Changes to Clause 4 of IEEE Std 1584–2002), IEEE Guide for Performing Arc-Flash Hazard Calculations. IEEE C2–2012, National Electrical Safety Code. NFPA 70E–2012, Standard for Electrical Safety in the Workplace. ## Subpart W—Rollover Protective Structures; Overhead Protection AUTHORITY: Section 3704 of the Contract Work Hours and Safety Standards Act (40 U.S.C. 3701); Sections 4, 6, and 8 of the Occupational Safety and Health Act of 1970 (29 U.S.C. 653, 655, 657); and Secretary of Labor's Order No. 12–71 (36 FR 8754), 8–76 (41 FR 25059), 9–83 (48 FR 35736), 1–90 (55 FR 9033), 6–96 (62 FR 111), 3–2000 (65 FR 50017), or 5–2002 (67 FR 65008), as applicable. ## § 1926.1000 Rollover protective structures (ROPS) for material handling equipment. - (a) Coverage. (1) This section applies to the following types of material handling equipment: To all rubber-tired, self-propelled scrapers, rubber-tired front-end loaders, rubber-tired dozers, wheel-type agricultural and industrial tractors, crawler tractors, crawler-type loaders, and motor graders, with or without attachments, that are used in construction work. This requirement does not apply to sideboom pipelaying tractors. - (2) The promulgation of specific standards for rollover protective structures for compactors and rubber-tired skid-steer equipment is reserved pending consideration of standards currently being developed. - (b) Equipment manufactured on or after September 1, 1972. Material handling machinery described in paragraph (a) of this section and manufactured on or after September 1, 1972, shall be equipped with rollover protective structures which meet the minimum performance standards prescribed in §§ 1926.1001 and 1926.1002, as applicable. - (c) Equipment manufactured before September 1, 1972. (1) All material handling equipment described in paragraph (a) of this section and manufactured or placed in service (owned or operated by the employer) prior to September 1, 1972, shall be fitted with rollover protective structures no later than the dates listed below: - (i) Machines manufactured on or after January 1, 1972, shall be fitted no later than April 1, 1973. - (ii) Machines manufactured between July 1, 1971, and December 31, 1971, shall be fitted no later than July 1, 1973. - (iii) Machines manufactured between July 1, 1970, and June 30, 1971, shall be fitted no later than January 1, 1974. - (iv) Machines manufactured between July 1, 1969, and June 30, 1970, shall be fitted no later than July 1, 1974. - (v) Machines manufactured before July 1, 1969: Reserved pending further study, development, and review. - (2) Rollover protective structures and supporting attachment shall meet the minimum performance criteria detailed in §§ 1926.1001 and 1926.1002, as applicable or shall be designed, fabricated, and installed in a manner which will support, based on the ultimate strength of the metal, at least two times the weight of the prime mover applied at the point of impact. - (i) The design objective shall be to minimize the likelihood of a complete overturn and thereby minimize the possibility of the operator being crushed as a result of a rollover or upset. - (ii) The design shall provide a vertical clearance of at least 52 inches from the work deck to the ROPS at the point of ingress or egress. - (d) Remounting. ROPS removed for any reason, shall be remounted with equal quality, or better, bolts or welding as required for the original mounting. - (e) Labeling. Each ROPS shall have the following information permanently affixed to the structure: - (1) Manufacturer or fabricator's name and address: - (2) ROPS model number, if any; - (3) Machine make, model, or series number that the structure is designed to fit. - (f) Machines meeting certain existing governmental requirements. Any machine in use, equipped with rollover protective structures, shall be deemed in compliance with this section if it meets the rollover protective structure requirements of the State of California, the U.S. Army Corps of Engineers, or the Bureau of Reclamation of ## § 1926.1001 the U.S. Department of the Interior in effect on April 5, 1972. The requirements in effect are: - (1) State of California: Construction Safety Orders, issued by the Department of Industrial Relations pursuant to Division 5, Labor Code, §6312, State of California. - (2) U.S. Army Corps of Engineers: General Safety Requirements, EM-385-1-1 (March 1967). - (3) Bureau of Reclamation, U.S. Department of the Interior: Safety and Health Regulations for Construction. Part II (September 1971). ## § 1926.1001 Minimum performance criteria for rollover protective structures for designated scrapers, loaders, dozers, graders, and crawler - (a) General. This section prescribes minimum performance criteria for roll-over protective structures (ROPS) for rubber-tired self-propelled scrapers; rubber-tired front-end loaders and rubber-tired dozers; crawler tractors, and crawler-type loaders, and motor graders. The vehicle and ROPS as a system shall have the structural characteristics prescribed in paragraph (f) of this section for each type of machine described in this paragraph. - (b) The static laboratory test prescribed herein will determine the adequacy of the structures used to protect the operator under the following conditions: - (1) For rubber-tired self-propelled scrapers, rubber-tired front-end loaders, and rubber-tired dozers: Operating between 0 and 10 miles per hour over hard clay where rollover would be limited to a maximum roll angle of 360° down a slope of 30° maximum. - (2) For motor graders: Operating between 0 and 10 miles per hour over hard clay where rollover would be limited to 360° down a slope of 30° maximum. - (3) For crawler tractors and crawler-type loaders: Operating between 0 and 10 miles per hour over hard clay where rollover would be limited to a maximum roll angle of 360° down a slope of 45° - (c) Facilities and apparatus. (1) The following material is necessary: - (i) Material, equipment, and tiedown means adequate to insure that the ROPS and its vehicle frame absorb the applied energy. - (ii) Equipment necessary to measure and apply loads to the ROPS. Adequate means to measure deflections and lengths should also be provided. - (iii) Recommended, but not mandatory, types of test setups are illustrated in Figure W-1 for all types of equipment to which this section applies; and in Figure W-2 for rubber-tired self-propelled scrapers; Figure W-3 for rubber-tired front-end loaders, rubber-tired dozers, and motor graders; and Figure W-4 for crawler tractors and crawler-type loaders. - (2) Table W-1 contains a listing of the required apparatus for all types of equipment described in paragraph (a) of this section. TABLE W-1 | Means to measure | Accuracy | |---|--| | Deflection of ROPS, inches | ±5% of deflection meas-
ured. | | Vehicle weight, pounds | ±5% of the weight measured. | | Force applied to frame, pounds
Dimensions of critical zone,
inches. | $\pm 5\%$ of force measured. ± 0.5 in. | - (d) Vehicle condition. The ROPS to be tested must be attached to the vehicle structure in the same manner as it will be attached during vehicle use. A totally assembled vehicle is not required. However, the vehicle structure and frame which support the ROPS must represent the actual vehicle installation. All normally detachable windows, panels, or nonstructural fittings shall be removed so that they do not contribute to the strength of the ROPS. - (e) Test procedure. The test procedure shall include the following, in the sequence indicated: - (1) Energy absorbing capabilities of ROPS shall be verified when loaded laterally by incrementally applying a distributed load to the longitudinal outside top member of the ROPS, as shown in Figure W-1, W-2, or W-3, as applicable. The distributed load must be applied so as to result in approximately uniform deflection of the ROPS. The load increments should correspond with approximately 0.5 in. ROPS deflection increment in the direction of the load application, measured at the ROPS top edge. Should the operator's